
PISketch: Finding Persistent and Infrequent Flows

Zhuochen Fan∗, Zhoujing Hu∗, Yuhan Wu∗, Jiarui Guo∗, Wenrui Liu∗,
Tong Yang∗, Hengrui Wang∗, Yifei Xu†, Steve Uhlig‡, Yaofeng Tu§

∗Peking University, †University of California, Los Angeles,
‡Queen Mary University of London, §ZTE Corporation

ABSTRACT
1Finding persistent and inactive activity periods is very helpful

in practice, for example to detect intrusion activities. Most of the

literature focuses on finding persistent flows or frequent flows. No

previous work is able to find persistent and infrequent flows. In

this paper, we propose a novel sketch data structure, PISketch, to

find persistent and infrequent flows in real time. The key idea of

PISketch is to define a weight and its Reward and Penalty System

for each flow to combine and balance the information of both per-

sistency and infrequency, and to keep high-weighted flows in a

limited space through a strategy. We implement PISketch on P4 and

CPU platforms, and compare the performance of PISketch with two

strawman solutions (On-Off + CM sketch, and PIE + CM sketch), in

terms of finding persistent and infrequent flows. Our experimental

results demonstrate the advantage of PISketch, by comparing it

to two strawman solutions: 1) The F1 Score of PISketch is around

22.1% and 57.6% higher than two strawman solutions, respectively;

2) The Average Relative Error (ARE) of PISketch is around 820.9 (up

to 1188.8) and 126.2 (up to 265.6) times lower than two strawman

solutions, respectively; 3) The insertion throughput of PISketch is

around 1.23 and 16.5 times higher than two strawman solutions, re-

spectively. Moreover, we implement two concrete cases of PISketch

through end-to-end experiments. All of our codes are available at

GitHub.

CCS CONCEPTS

• Networks→ Network measurement.

KEYWORDS

Persistent Items; Infrequent Items; Sketch; Weight Fusion;

∗School of Computer Science, and National Engineering Laboratory for Big Data
Analysis Technology and Application, Peking University, China
†Computer Science Department, University of California, Los Angeles, USA
‡School of Electronic Engineering and Computer Science, Queen Mary University of
London, U.K.
§ZTE Corporation, China
1Zhuochen Fan, Zhoujing Hu, and Yuhan Wu contribute equally to this pa-
per. Corresponding author: Yaofeng Tu (tu.yaofeng@zte.com.cn) and Tong Yang
(yangtongemail@gmail.com).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

FFSPIN ’22, August 22, 2022, Amsterdam, Netherlands

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9329-4/22/08. . . $15.00
https://doi.org/10.1145/3528082.3544834

ACM Reference Format:

Zhuochen Fan, Zhoujing Hu, Yuhan Wu, Jiarui Guo, Wenrui Liu, Tong

Yang, Hengrui Wang, Yifei Xu, Steve Uhlig, Yaofeng Tu. 2022. PISketch:

Finding Persistent and Infrequent Flows. In ACM SIGCOMM 2022 Workshop

on Formal Foundations and Security of Programmable Network Infrastructures

(FFSPIN ’22), August 22, 2022, Amsterdam, Netherlands. ACM, Philadelphia,

PA, USA, 7 pages. https://doi.org/10.1145/3528082.3544834

1 INTRODUCTION

1.1 Background and Motivation

Finding frequent flows and persistent2 flows has been considered

as two important tasks in approximate data stream processing and

network measurement [1–11]. Differently, we find that finding

persistent and infrequent flows in data streams is also important,

for example to identify activities that are sustained but inactive.

Let us describe two possible use cases for finding persistent and

infrequent flows.

• Case 1. Attack Defense. Many cyber attacks like Advanced Per-

sistent Threats (APT) [12, 13] prefer persistently and covertly

intruding target streaming databases to evade detection.

• Case 2.High-risk service discovery. In enterprise networks, high-

risk services like Fast Reverse Proxy (FRP)3 [14] can expose

local servers behind a Network Address Translation (NAT) or

firewall to the Internet. These connections are characterized by

persistence and infrequency: FRP persistently produces packets,

but the number of produced packets is very limited.

Finding persistent and infrequent flows is fundamental in these

cases. However, no existing work focuses on finding persistent

and infrequent flows. The majority of relevant works aim to either

finding frequent flows or persistent ones. In this paper, we are

concerned with finding persistent and infrequent flows, 𝑖 .𝑒 ., flows
that are seen persistently but do not occur that frequently. We call

such flows PI flows.

1.2 Prior Art and Limitations

To find PI flows4, one straightforward solution is to find the

intersection of persistent flows and infrequent flows. The state-of-

the-art algorithms for finding persistent flows are the On-Off [1]

and the PIE [2, 3]. The state-of-the-art algorithms for estimating

flow frequencies are sketch-based algorithms like the Count-Min

(CM) sketch [15]. They are typically used to find frequent flows.

As the distribution of flow frequencies (also known as flow sizes,

the number of packets in a flow) is highly skewed [16, 17] in real

2Time-based windows: The window size is defined as a fixed period of time. We define
the persistency of flow 𝑓 as the number of time windows where 𝑓 occurs.
3FRP supports HTTP/HTTPS, TCP, UDP and many other protocols, and forwards
requests to internal services through domain names.
4A flow in this paper is defined as a part of the five tuples: source IP address, destination
IP address, source port, destination port, and protocol.

FFSPIN ’22, August 22, 2022, Amsterdam, Netherlands Zhuochen Fan, Zhoujing Hu, Yuhan Wu, et al.

network traces, the number of infrequent flows is always very large

but considered as less important than frequent ones. To the best of

our knowledge, no prior work has focused on finding infrequent

flows. Although the above two types of algorithms can find persis-

tent flows and frequent flows respectively, their combination is not

optimized for finding persistent and infrequent flows. Indeed, be-

cause the set of persistent flows and the set of infrequent flows can

be very large, storing both sets leads to large memory consumption,

which is unacceptable in network measurement. Large memory

consumption also leads to slow speed, because such algorithms

often need to run on fast on-chip5 SRAM (Static RAM) to achieve

high speed, and the size of the on-chip SRAM is limited [7, 19]. In

summary, the problem of finding PI flows is new and existing solutions

do not work. We aim to design an efficient algorithm to approach it.

1.3 Our Solution

In this paper, we propose a novel sketch (𝑖 .𝑒 ., a kind of prob-

abilistic data structures and algorithms), named PISketch, to find

persistent and infrequent flows (PI flows) in real time. To the best

of our knowledge, this is the first effort to find PI flows. PISketch

is compact. For example, it only requires 100KB of memory when

working on 10M flows, where the length of each flow ID is 4 bytes.

PISketch is accurate. Based on our experiments, the F1 Score of

PISketch is around 22.1% and 57.6% higher than two strawman solu-

tions (𝑖 .𝑒 ., On-Off + CM sketch, and PIE + CM sketch), respectively.

Also, the Average Relative Error (ARE) of PISketch is on average

820.9 (up to 1188.8) times and 126.2 (up to 265.6) times lower than

two strawman solutions, respectively. PISketch is fast. Its time com-

plexity is𝑂 (1), and its insertion throughput is around 1.23 and 16.5

times higher than two strawman solutions, respectively.

PISketch has two key techniques. The first technique is a Reward

and Penalty System that can summarises both persistency and

infrequency through one numeric weight; The second technique

is a Weight sketch that can find high-weighted flows even if the

weight decreases over time:

1) Finding PI flows is much more challenging than finding fre-

quent or persistent flows. The reason behind this is that the tradi-

tional weight (frequency and persistency) increases incrementally

as time goes by. In contrast, the weight of a PI flow could increase

sharply or decrease incrementally. Therefore, the key is to capture

the changes of the weight of PI flows. Our first key technique is to

design a Reward and Penalty System which awards or punishes

the weight reasonably. The details are provided in Section 3.1.

2) After weighting the PI flows, the challenge lies in how to find

the most high-weighted PI flows with limited space. In other words,

as new flows arrive continuously, it is a challenge to preserve the old

high-weighted flows while taking in new PI flows whose weights

have just begun to grow. In this process, the old and new flows will

compete fiercely to stay. The stayed flows are like becoming the

presidential candidates, which can get more opportunities to be

observed. There is no existing work can directly handle the top-𝑘
weight problem whose weight could decrease. Thus, we propose

our second key technique in the Weight sketch, called Weight

Fusion Strategy, which decrements the low weight flows to make

room for new flows (see Section 3.2 - 3.3 for details).

5On-chip memory, such as CPU cache and FPGA block RAM, 𝑒𝑡𝑐. [18]

We implement PISketch entirely on P4 platform in Section 4.

Further, we conduct extensive experiments on CPU platform, and

our experimental results demonstrate the obvious advantages of

PISketch over two strawman solutions. In addition, we implement

two concrete cases of PISketch for the preliminary detection of APT

and FRP flows. More details are provided in Section 5. We provide

all the related code open-source at GitHub6 [20].

Key Contributions:

• We propose and define a new problem called “finding persistent

and infrequent flows”, which has not been studied before.

• We propose a novel sketch, PISketch, to find persistent and in-

frequent flows, accurately, fast, and using limited memory.

• We fully implement PISketch on P4 and conduct extensive ex-

periments on CPU. Experimental results show that our PISketch

outperforms two strawman solutions (On-Off + CM sketch, and

PIE + CM sketch). In addition, we also implement two concrete

cases of PISketch through end-to-end experiments.

2 RELATEDWORK

2.1 Finding Persistent Flows

Several algorithms have been proposed to find persistent flows

[1–4, 21, 22]. The state-of-art algorithms are On-Off [1] and PIE

[2, 3]. The idea of On-Off is to exploit the increasing persistence of

flows. No matter how many flows are mapped to the same counter

in a time window, On-Off only increases this counter by one. In this

way, On-Off first estimates the persistence of all flows, and then

changes the data structure to split persistent and non-persistent

flows. It only stores the information about persistent flows, and

protects them from replacements and hash collisions with other

flows. PIE uses a data structure called Space-Time Bloom filter based

on the Invertible Bloom filter [23, 24] and a Raptor code [25] to

encode the flow IDs. During each measurement period, PIE main-

tains a Space-Time Bloom filter. When inserting a flow, it uses the

Raptor code to encode the flow ID into many segments, and ran-

domly selects some segments to store in the Space-Time Bloom

filter, which aims at reducing the memory usage. When querying

a flow, PIE gathers all Space-Time Bloom filters. If and only if it

occurs in enough measurement periods and enough encoded bits

for the stored ID, PIE can decode its flow ID from the Space-Time

Bloom filter.

2.2 Frequency Estimation

Frequency (flow size) estimation consists in estimating the num-

ber of occurrences of flows. It has been widely studied. Sketches

have proved their superiority in frequency estimation [9, 10, 26, 27].

Actually, they can achieve high accuracy and speed with limited

memory usage. There are many sketch-based algorithms for esti-

mating flow frequency [5, 7, 8, 15, 28–34], the most typical being

the widely used Count-Min (CM) sketch [15]. The CM sketch uses

multiple equal-sized buckets. Every bucket is associated with a hash

function ℎ𝑖 . When a flow 𝑓 arrives, every bucket calculates its hash

value ℎ𝑖 (𝑓) to map 𝑓 to the cell 𝐴[𝑖] [ℎ𝑖 (𝑓)], and the value of the

cell is increased by 1. For the recorded flow, its frequency is the mini-

mum value of all its mapped cells, and then top-𝑘 frequent flows can

6https://github.com/pkufzc/PISketch

PISketch: Finding Persistent and Infrequent Flows FFSPIN ’22, August 22, 2022, Amsterdam, Netherlands

be selected. Besides the CM sketch, other typical sketch-based algo-

rithms include sketches of CU [28], C [29], CSM [30], and ASketch

[31], PyramidSketch [32], HeavyKeeper [8], HeavyGuardian [33],

Cold Filter [34], 𝑒𝑡𝑐. which focus on accurately estimating large/ele-

phant flows. State-of-the-art sketch-based network measurement

systems include SketchVisor [6], UnivMon [5], ElasticSketch [7],

Nitrosketch [9], CocoSketch [10], LightGuardian [35], 𝑒𝑡𝑐.

3 PISKETCH DESIGN

In this section, we first define the weight of a flow. Then, we

introduce the data structure of PISketch. Next, we give the details

of how to process incoming flows based on the weight.

3.1 Weight Definition

Preliminary:Given a data streamS, we divide it into𝑉 equal-sized

and continuous time windows.

We use the same weight definition for each time window. If flow

𝑓 appears in the 𝑖𝑡ℎ window for the first time, its weight𝑊𝑖 is

incremented by the initial value 𝐿; when 𝑓 appears in this window

for the second time, its weight is decremented by 1; when 𝑓 appears
in this window for the third time, its weight is also decremented by

1, and so on.

Initially, the weight𝑊𝑖
(
1 ≤ 𝑖 ≤ 𝑉 , 𝑖 ∈ Z+

)
of flow 𝑓 that occurs

𝑂𝑖
(
𝑂𝑖 ∈ Z

+
)
times in the 𝑖𝑡ℎ window can be calculated as:

𝑊𝑖 =

{
0, if 𝑂𝑖 = 0;

𝐿 − (𝑂𝑖 − 1) , if 𝑂𝑖 ≥ 1.
(1)

where𝑂𝑖 is the number of occurrences of flow 𝑓 in the 𝑖𝑡ℎ window.

If 𝑂𝑖 = 0, flow 𝑓 never occurs in the window, so we set𝑊𝑖 = 0.

𝐿
(
𝐿 ∈ Z+

)
is the initial value assigned to each flow when it first

appears in the 𝑖𝑡ℎ window.

Equation 1 is the mathematical expression of our proposed Re-

ward and Penalty System. Next, we define the total weight𝑊𝑓 of

flow 𝑓 in all windows as𝑊𝑓 =
∑𝑉
𝑖=1𝑊𝑖 .

PISketch design goal: Persistent and infrequent flows (PI flows)

refer to the flows whose total weight is larger than a given thresh-

old T . Actually, T can be defined by the users according to their

requirements or the specific application requirements. Flows with

higher total weight are more likely to be reported as PI flows. Note

that the total weight of a flow may be negative, in which case the

flow is definitely not among the PI flows we want to report, due to

its high occurrences.

3.2 Data Structure

As illustrated in Figure 1, PISketch consists of two parts: The

first part reports whether a flow occurs in current time window for

the first time. The second part calculates the weight of each flow

and finds out which flows are most likely to have high weights.

The data structure of the first part is a Bloom filter [36]. The

Bloom filter is a compact representation of the flows that have

arrived in the current time window. When a new time window

begins, we reset the Bloom filter. Every time a flow comes, we

query whether it has been seen for the first time (𝑖 .𝑒 ., has not been
inserted), and if so then insert it into the Bloom filter. Then, we

pass the answer to the next part for weight calculation. A Bloom

……

Bucket 1 Bucket 2 Bucket 3 Bucket U

Cell 1
Cell 2

Cell p

(ID, Wf, Nf)

… f Hash Function: h(.)

h(f)=3

PISketch Part 1: Bloom filter

PISketch Part 2: Weight sketch
……… …

Figure 1: Data structure of PISketch.

filter7 is used to remove duplicates from incoming flows. Removing

duplicates is necessary because the operations for the first arrival

and subsequent arrivals are different, according to Equation (1). If

the Bloom filter reports true, it means that the flow has appeared

in this time window.

The data structure of the second part is theWeight sketch. Its basic

structure is a hash table with 𝑈 buckets 𝐵1, 𝐵2, . . . , 𝐵𝑈 . Based on

the query results in the previous part, the Weight sketch calculates

the total weight of each flow according to Equation (1) and keeps

the flows whose weights might potentially exceed T as much as

possible. Each bucket of the Weight sketch has 𝑝 cells, and each

cell has three fields including flow ID (key), (total) weight and the

number of windows where the flow occurs. A hash function ℎ(.)
also randomly maps the flow to one of the buckets.

3.3 Operations

Insertion: Given an incoming flow 𝑓 to the 𝑖𝑡ℎ window, we first

query the Bloom filter to check whether this flow has occurred in

the current window. If the Bloom filter reports false, indicating 𝑓
does not occur in the current window, then we insert 𝑓 into the

Bloom filter and perform two operations for this window: initialise

the weight𝑊𝑖 = 𝐿 and increment window number 𝑁𝑓 = 𝑁𝑓 + 1.

Otherwise, it indicates that flow 𝑓 has already occurred in the

current window. We decrement the weight𝑊𝑖 of this window by 1,

𝑖 .𝑒 .,𝑊𝑖 =𝑊𝑖 − 1, as shown in Equation (1). Then, we try to store

the information of 𝑓 to its mapped bucket 𝐵ℎ (𝑓) . According to the

content of 𝐵ℎ (𝑓) , there are three different cases:
Case 1: If a cell contains 𝑓 , we update the fields of this cell: (1) We

add𝑊𝑖 to the total weight𝑊𝑓 , 𝑖 .𝑒 .,𝑊𝑓 ←𝑊𝑓 +𝑊𝑖 ; (2) We update

the stored 𝑁𝑓 to the current one.

Case 2: If we fail to find 𝑓 in 𝐵ℎ (𝑓) and 𝐵ℎ (𝑓) is not full, then we

store 𝑓 in an arbitrary empty cell. We set𝑊𝑓 to𝑊𝑖 , 𝑖 .𝑒 .,𝑊𝑓 ←𝑊𝑖 .

In this case:𝑊𝑓 = 𝐿, 𝑁𝑓 = 1.

Case 3: If no cell in 𝐵ℎ (𝑓) contains 𝑓 and 𝐵ℎ (𝑓) does not contain
empty cells, then we try to evict a flow from 𝐵ℎ (𝑓) to make room

for 𝑓 . To keep as many potential PI flows as possible in the data

structure, we select a flow 𝑓 ′ whose weight is the smallest among

all flows of 𝐵ℎ (𝑓) . Although the weight of 𝑓 ′ is the smallest, we

7A Bloom filter is a highly compact probabilistic structure that consists of an M
bits array with 𝑘 hash mapping functions: ℎ1 (.), ℎ2 (.), . . . , ℎ𝑘 (.) , and each bit is set
to 0 at the beginning. For each incoming flow, its 𝑘 mapped bits are set to 1. For a
membership query, 𝑖 .𝑒., querying whether a flow occurs in the data stream, the Bloom
filter checks whether all its 𝑘 mapped bits have been set to 1.

FFSPIN ’22, August 22, 2022, Amsterdam, Netherlands Zhuochen Fan, Zhoujing Hu, Yuhan Wu, et al.

cannot determine yet whether 𝑓 ′ is a PI flow or not. Therefore, we

evict 𝑓 ′ with the smallest weight𝑊𝑓 ′ in 𝐵ℎ (𝑓) using the Weight

Fusion Strategy: Whenever an eviction/replacement happens, we

decrement𝑊𝑓 ′ by 1. After decrementing, if𝑊𝑓 ′ is lower than 0, it

means that the replacement is successful. We then evict flow 𝑓 ′,
and 𝑓 occupies the position of 𝑓 ′.𝑊𝑓 is set to𝑊𝑖 + 1, and 𝑁𝑓 is set

to 1. If the replacement is unsuccessful, 𝑓 leaves.

Finally, we clear the Bloom filter by setting all bits to 0 at the

end of each time window.

Query: Based on the above operations, PISketch can keep many

PI flows with high weights. To get these PI flows, PISketch only

needs to traverse the buckets. Note that all the reported flows are

potential PI flows. Therefore, users should carry on further analysis

of these potential PI flows. Furthermore, the number of reported

PI flows depends on the memory size of the data structure. The

minimum memory size of the data structure should therefore be

adapted to the minimum expected number of PI flows.

4 P4 IMPLEMENTATION

We have fully built a P4 prototype of the PISketch on the Tofino

switch [37]. In the P4 version of PISketch, only the ID and weight

of the flow are reserved for each cell in the Weight sketch (Part

2) to ensure sufficient hardware resources. We list the utilization

of various hardware resources on the switch in Table 1. We find

that Map RAM and Stateful ALU are the two most used resources

of PISketch, accounting for 31.94% and 29.17% of the total quota,

respectively. For other kinds of sources, PISketch uses up to 19.17%

of the total quota.

Table 1: H/W Resources Used by PISketch.

Resource Usage Percentage

Hash Bits 597 11.96%

SRAM 184 19.17%

Map RAM 184 31.94%

TCAM 0 0%

Stateful ALU 14 29.17%

VLIW Instr 27 7.36%

Match Xbar 113 7.10%

5 EXPERIMENTAL RESULTS

In this section, we show the experimental results of PISketch

on CPU. First, we describe the experimental setup and metrics in

Section 5.1 and Section 5.2, respectively. Next, we evaluate the

performance of PISketch on different datasets and compare it with

two strawman solutions in Section 5.3. Finally, through two end-

to-end experiments, in Section 5.4 and Section 5.5, we provide two

concrete applications of PISketch.

5.1 Experiment Setup

Implementation: We implement our algorithm and related al-

gorithms in C++. Our hash function is the Bob Hash [38]. We

conduct experiments on a server with two CPUs (Intel Xeon

E5-2620V3@2.4GHZ) and 62GB DRAM.

Datasets: We use three real-world datasets and one synthetic

dataset. Each dataset contains about 5M flows.

(1) CAIDADataset:This IP TraceDataset is streams of anonymized

IP traces collected in 2018 by CAIDA [39].

(2) MAWI Dataset: This real packet traffic trace dataset is provided

by the MAWI Working Group [40].

(3) Network Dataset: This dataset contains users’ posting history

on the stack exchange website [41]. Each flow has three values 𝑢, 𝑣 ,
𝑡 , which means user 𝑢 answered user 𝑣 ’s question at time 𝑡 . We use

𝑢 as the ID and 𝑡 as the timestamp of a flow.

(4) Synthetic Dataset I: Since large-scale real APT flows are too

difficult to obtain, we synthesize this dataset by referring to some

literature [42–45] to evaluate the performance of PISketch’s prelim-

inary screening for suspected APT flows. Specifically, our synthetic

approach consists of mixing the real APT flows from Contagio Mal-

ware Database [46] with the normal flows from CAIDA Dataset. In

this dataset, about 600 real attack flows are mixed with millions of

normal flows.

(5) Synthetic Dataset II: Since large-scale real FRP flows are too

difficult to obtain, we synthesize this dataset to evaluate the perfor-

mance of PISketch’s preliminary screening for suspected FRP flows.

Our synthetic approach is similar to the above Synthetic Dataset I,

except that the real FRP flows are collected by ourselves (see the

Methodology in Section 5.5). In this dataset, about 40 captured

FRP flows are mixed with millions of normal flows.

5.2 Metrics

We evaluate the following three performance metrics: F1 Score,

Average Relative Error (ARE) and Throughput.

(1) F1 Score: 2∗𝑃𝑅∗𝑅𝑅
𝑃𝑅+𝑅𝑅 . Precision Rate (PR) indicates the ratio of

truly reported PI flows to the reported flows, and Recall Rate (RR)

indicates the ratio of truly reported PI flows to the total PI flows.

We use F1 Score to evaluate the accuracy.

(2) Average Relative Error (ARE): Let 𝑁1, 𝑁2, . . . , 𝑁𝑘 be the esti-

mated window number of the reported flows, and let 𝑁1, 𝑁2, . . . , 𝑁𝑘
be the true window number of the reported flows. ARE is defined

as 1
𝑘 ·

∑𝑘
𝑗=1

|𝑁 𝑗−𝑁 𝑗 |

𝑁 𝑗
.

(3) Throughput: Million operations (insertions) per second (Mops).

All the experiments about throughput are repeated 10 times, and

the average throughput is reported. We use throughput to evaluate

the speed.

5.3 Experiments on Finding PI Flows

We compare PISketch with two strawman solutions: 1) On-Off +

CM sketch; 2) PIE + CM sketch. For PISketch and On-Off + CM

sketch, we set the memory size range to 100KB-250KB.8 For

PIE + CM sketch, the memory size range is set to 10000KB-

25000KB. This means its memory range is 100 times the one

of PISketch (applicable to Sections 5.3 - 5.5). Specifically, we use

PIE [2]/On-Off [1] to estimate flow persistency (𝑖 .𝑒 ., the time win-

dow number), and the CM sketch [15] to estimate flow frequency.

We then combine them together to get the estimated persistency

and infrequency, and finally find PI flows. The parameter configu-

rations of PISketch and two strawman solutions is detailed in our

8The memory range for PISketch and On-Off + CM sketch in Section 5.5 is set to
150KB-300KB, while for PIE + CM sketch is 15000KB-30000KB.

PISketch: Finding Persistent and Infrequent Flows FFSPIN ’22, August 22, 2022, Amsterdam, Netherlands

100 150 200 250
0.4
0.5

0.6
0.7

0.8
0.9

1

F1
Sc
or
e

Memory (KB)

PI(ours) Sol-1 Sol-2

(a) CAIDA

100 150 200 250
0.4
0.5

0.6
0.7

0.8
0.9

1

F1
Sc
or
e

Memory (KB)

PI(ours) Sol-1 Sol-2

(b) MAWI

100 150 200 250
0

0.2

0.4

0.6

0.8

1

F1
Sc
or
e

Memory (KB)

PI(ours) Sol-1 Sol-2

(c) Network

Figure 2: F1 Score on finding PI flows.

100 150 200 250
10-4
10-3
10-2
10-1
100
101
102

A
R
E

Memory (KB)

PI(ours) Sol-1 Sol-2

(a) CAIDA

100 150 200 250
10-4
10-3
10-2
10-1
100
101
102

A
R
E

Memory (KB)

PI(ours) Sol-1 Sol-2

(b) MAWI

100 150 200 250
10-4
10-3
10-2
10-1
100
101
102

A
R
E

Memory (KB)

PI(ours) Sol-1 Sol-2

(c) Network

Figure 3: ARE on finding PI flows.

100 150 200 250
0

2

4

6

8

10

T
hr
ou
gh
pu
t(
M
op
s)

Memory (KB)

PI(ours) Sol-1 Sol-2

(a) CAIDA

100 150 200 250
0

2

4

6

8

10

T
hr
ou
gh
pu
t(
M
op
s)

Memory (KB)

PI(ours) Sol-1 Sol-2

(b) MAWI

100 150 200 250
0
2

4
6

8
10

12
T
hr
ou
gh
pu
t(
M
op
s)

Memory (KB)

PI(ours) Sol-1 Sol-2

(c) Network

Figure 4: Throughput on finding PI flows.

supplemental material [47]. In the following, we refer to On-Off +

CM sketch as Sol-1 and PIE + CM sketch as Sol-2 for short.

Parameter Settings: We set 𝐿 = 10, 𝑉 = 1000, T = 3000, and

𝑝 = 5.

F1 Score (Figure 2(a)-2(c)): We find that the F1 Score of PISketch is

much higher than the one of Sol-1 and Sol-2. On the three real-world

datasets, the F1 Score of PISketch is around 22.1% and 57.6% higher

than the one of Sol-1 and Sol-2 on average, respectively.

ARE (Figure 3(a)-3(c)): We find that the ARE of PISketch is signifi-

cantly lower than the one of Sol-1 and Sol-2. On the three real-world

datasets, the ARE of PISketch is around 820.9 (up to 1188.8) and

126.2 (up to 265.6) times lower than the one of Sol-1 and Sol-2 on

average, respectively.

Throughput (Figure 4(a)-4(c)): We find that the insertion through-

put of PISketch is higher than the one of Sol-1 and is obviously higher

than the one of Sol-2. On the three real-world datasets, the through-

put of PISketch is around 1.23 and 16.5 times higher than the one

of Sol-1 and Sol-2 on average, respectively.

Analysis: Our results show that PISketch has better performance

than Sol-1 and Sol-2, as expected. The main reasons are: 1) PISketch

has converted frequencies and persistencies into weights. Therefore,

there is no need to store them in each time window; 2) PISketch

filters out most low-weight flows and finds PI flows more effectively

through a competition (𝑖 .𝑒 ., eviction and replacement) mechanism.

Also, the space complexity of PISketch is lower than the one of

Sol-1, and much smaller than the one of Sol-2.

FFSPIN ’22, August 22, 2022, Amsterdam, Netherlands Zhuochen Fan, Zhoujing Hu, Yuhan Wu, et al.

150 200 250 300
0

0.2

0.4

0.6

0.8

1

F1
Sc
or
e

Memory (KB)

PI(ours) Sol-1 Sol-2

(a) F1 Score

150 200 250 300
10-2

10-1

100

101

102

A
R
E

Memory (KB)

PI(ours) Sol-1 Sol-2

(b) ARE

150 200 250 300
0

4

8

12

T
hr
ou
gh
pu
t(
M
op
s)

Memory (KB)

PI(ours) Sol-1 Sol-2

(c) Throughput

Figure 5: Evaluation on APT preliminary detection.

150 200 250 300
0

0.2

0.4

0.6

0.8

1

F1
Sc
or
e

Memory (KB)

PI(ours) Sol-1 Sol-2

(a) F1 Score

150 200 250 300
10-2

10-1

100

101

A
R
E

Memory (KB)

PI(ours) Sol-1 Sol-2

(b) ARE

150 200 250 300
0

4

8

12

T
hr
ou
gh
pu
t(
M
op
s)

Memory (KB)

PI(ours) Sol-1 Sol-2

(c) Throughput

Figure 6: Evaluation on FRP preliminary detection.

5.4 End-to-End Experiment I: Application in
Preliminary APT Detection

Methodology: The implementation method of this experiment is

similar to Section 5.3. Specifically, we run PISketch on the Synthetic

Dataset I (see Section 5.1), and the output PI flows is the suspected

APT flows. We use F1 Score, ARE, and throughput as evaluation

metrics.

Experimental Results (Figures 5(a)-5(c)): We find that PISketch

performs better than Sol-1 and Sol-2 in the preliminary screening of

suspected APT flows. The results are as follows. 1) The F1 Score of

PISketch is around 62.4% and 34.3% higher than the one of Sol-1 and

Sol-2, respectively. 2) The ARE of PISketch is around 112.1 and 1.69

times lower than the one of Sol-1 and Sol-2 on average, respectively.

3) The throughput of PISketch is around 1.50 and 17.7 times higher

than the one of Sol-1 and Sol-2 on average, respectively.

5.5 End-to-End Experiment II: Application in
Preliminary FRP Detection

Methodology: We deploy FRP in two cloud servers. One server

is hidden in the enterprise network and it deploys a FRP client

(FRPc). The other server runs as a FRP server (FRPs), which can

expose the server with FRP client to the Internet. When FRPs starts

the service, FRPc connects through IP and port number, and they

communicate every once in a while. Next, we use tcpdump [48] to

capture the communication traffic between the two servers. Within

the NAT, the IP address of FRPc may change due to DHCP. We

repeat the experiment 20 times including setting up new cloud

servers and capturing the communication traffic between FRPc and

FRPs. Finally, we mix these captured traffic (40 FRP flows in total)

into the normal flows to generate the Synthetic Dataset II described

in Section 5.1, and evaluate whether PISketch can find the FRP

flows out (similar to the experiment in Section 5.4). We still use F1

Score, ARE, and throughput as evaluation metrics.

Experimental Results (Figure 6(a)-6(c)): We find that PISketch

outperforms than Sol-1 and Sol-2 on preliminary detection of suspected

FRP flows. The results are as follows. 1) The F1 Score of PISketch

is around 83.8% and 46.2% higher than the one of Sol-1 and Sol-2,

respectively. 2) The ARE of PISketch is around 69.0 times lower

than Sol-1 and 1.99 times higher than Sol-2, while Sol-2 uses 100

times larger memory size than ours. 3) The throughput of PISketch

is around 1.57 and 18.7 times higher than the one of Sol-1 and Sol-2

on average, respectively.

6 CONCLUSION

In this paper, we propose PISketch, which is the first algorithm

for finding PI (persistent and infrequent) flows in real time. We im-

plement PISketch entirely on P4 and conduct extensive experiments

on CPU. Specifically, we compare PISketch with two strawman solu-

tions, one being On-Off + CM sketch and the other PIE + CM sketch.

Our experimental results illustrate the advantages of our approach:

PISketch can achieve around 22.1%/57.6% higher F1 Score, 1.23/16.5

times higher throughput, and 820.9/126.2 times lower ARE. Fur-

thermore, our two end-to-end experiments demonstrate the good

performance of PISketch in preliminary detection of APT and FRP

flows.

PISketch: Finding Persistent and Infrequent Flows FFSPIN ’22, August 22, 2022, Amsterdam, Netherlands

ACKNOWLEDGMENT

This work is supported by Key-Area Research and Development

Program of Guangdong Province 2020B0101390001, National Natu-

ral Science Foundation of China (NSFC) (No. U20A20179, 61832001).

REFERENCES
[1] Yinda Zhang, Jinyang Li, Yutian Lei, Tong Yang, Zhetao Li, Gong Zhang, and Bin

Cui. On-off sketch: a fast and accurate sketch on persistence. Proc. VLDB Endow.,
14(2):128–140, 2021.

[2] Haipeng Dai, Muhammad Shahzad, Alex X. Liu, Meng Li, Yuankun Zhong,
and Guihai Chen. Identifying and estimating persistent items in data streams.
IEEE/ACM Transactions on Networking, 26(6):2429–2442, 2018.

[3] Haipeng Dai, Meng Li, Alex X. Liu, Jiaqi Zheng, and Guihai Chen. Finding
persistent items in distributed datasets. IEEE/ACM Transactions on Networking,
28(1):1–14, 2020.

[4] He Huang, Yu-E Sun, Chaoyi Ma, Shigang Chen, You Zhou,Wenjian Yang, Shaojie
Tang, Hongli Xu, and Yan Qiao. An efficient k-persistent spread estimator
for traffic measurement in high-speed networks. IEEE/ACM Transactions on
Networking, 28(4):1463–1476, 2020.

[5] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir
Braverman. One sketch to rule them all: Rethinking network flow monitoring
with univmon. In Proceedings of the 2016 ACM SIGCOMM Conference (SIGCOMM
’16), page 101–114, 2016.

[6] Qun Huang, Xin Jin, Patrick PC Lee, Runhui Li, Lu Tang, Yi-Chao Chen, and
Gong Zhang. Sketchvisor: Robust network measurement for software packet
processing. In Proceedings of the Conference of the ACM Special Interest Group on
Data Communication (SIGCOMM ’17), pages 113–126, 2017.

[7] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao,
Xiaoming Li, and Steve Uhlig. Elastic sketch: Adaptive and fast network-wide
measurements. In Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication (SIGCOMM ’18), pages 561–575, 2018.

[8] Tong Yang, Haowei Zhang, Jinyang Li, Junzhi Gong, Steve Uhlig, Shigang Chen,
and Xiaoming Li. Heavykeeper: An accurate algorithm for finding top-𝑘 elephant
flows. IEEE/ACM Transactions on Networking, 27(5):1845–1858, 2019.

[9] Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kassner, Vladimir Braverman,
Roy Friedman, and Vyas Sekar. Nitrosketch: Robust and general sketch-based
monitoring in software switches. In Proceedings of the ACM Special Interest Group
on Data Communication (SIGCOMM ’19), page 334–350, 2019.

[10] Yinda Zhang, Zaoxing Liu, Ruixin Wang, Tong Yang, Jizhou Li, Ruijie Miao, Peng
Liu, Ruwen Zhang, and Junchen Jiang. Cocosketch: High-performance sketch-
based measurement over arbitrary partial key query. In Proceedings of the 2021
ACM SIGCOMM Conference (SIGCOMM ’21), page 207–222, 2021.

[11] Hun Namkung, Zaoxing Liu, Daehyeok Kim, Vyas Sekar, and Peter Steenkiste.
Sketchlib: Enabling efficient sketch-based monitoring on programmable switches.
In 19th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 22), pages 743–759, 2022.

[12] Eric Cole. Advanced Persistent Threat: Understanding the Danger and How to
Protect Your Organization. Syngress Publishing, 2012.

[13] Adel Alshamrani, Sowmya Myneni, Ankur Chowdhary, and Dijiang Huang. A
survey on advanced persistent threats: Techniques, solutions, challenges, and
research opportunities. IEEE Communications Surveys and Tutorials, 21(2):1851–
1877, 2019.

[14] fatedier/frp: A fast reverse proxy to help you expose a local server behind a nat
or firewall to the internet. https://github.com/fatedier/frp.

[15] Graham Cormode and Shan Muthukrishnan. An improved data stream summary:
the count-min sketch and its applications. Journal of Algorithms, 55(1):58–75,
2005.

[16] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKeown,
Balaji Prabhakar, and Scott Shenker. Pfabric: Minimal near-optimal datacenter
transport. In Proceedings of the 2013 ACM Conference on Special Interest Group on
Data Communication (SIGCOMM ’13), page 435–446, 2013.

[17] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu, Ratul Mahajan,
Dave Maltz, Lihua Yuan, Ming Zhang, Ben Y Zhao, et al. Packet-level telemetry in
large datacenter networks. In Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication (SIGCOMM ’15), pages 479–491, 2015.

[18] Tong Yang, Gaogang Xie, YanBiao Li, Qiaobin Fu, Alex X. Liu, Qi Li, and Laurent
Mathy. Guarantee ip lookup performance with fib explosion. In Proceedings of
the 2014 ACM Conference on SIGCOMM (SIGCOMM ’14), pages 39–50, 2014.

[19] Abhishek Kumar, Jun Xu, and Jia Wang. Space-code bloom filter for efficient
per-flow traffic measurement. IEEE Journal on Selected Areas in Communications,
24(12):2327–2339, 2006.

[20] Source code and more details related to PISketch. https://github.com/pkufzc/
PISketch.

[21] Bibudh Lahiri, Jaideep Chandrashekar, and Srikanta Tirthapura. Space-efficient
tracking of persistent items in a massive data stream. In Proceedings of the 5th
ACM International Conference on Distributed Event-Based System (DEBS ’11), pages

255–266, 2011.
[22] You Zhou, Yian Zhou, Min Chen, and Shigang Chen. Persistent spread measure-

ment for big network data based on register intersection. Proc. ACM Meas. Anal.
Comput. Syst., 1(1):1–29, 2017.

[23] David Eppstein, Michael T Goodrich, Frank Uyeda, and George Varghese. What’s
the difference?: efficient set reconciliation without prior context. ACM SIGCOMM
Computer Communication Review, 41(4):218–229, 2011.

[24] Michael T. Goodrich and Michael Mitzenmacher. Invertible bloom lookup ta-
bles. In 2011 49th Annual Allerton Conference on Communication, Control, and
Computing (Allerton), pages 792–799, 2011.

[25] Amin Shokrollahi, Michael Luby, et al. Raptor codes. Foundations and trends® in
communications and information theory, 6(3–4):213–322, 2011.

[26] Robert Schweller, Zhichun Li, Yan Chen, Yan Gao, Ashish Gupta, Yin Zhang,
Peter ADinda, Ming-Yang Kao, and GokhanMemik. Reversible sketches: enabling
monitoring and analysis over high-speed data streams. IEEE/ACM Transactions
on Networking, 15(5):1059–1072, 2007.

[27] Balachander Krishnamurthy, Subhabrata Sen, Yin Zhang, and Yan Chen. Sketch-
based change detection: Methods, evaluation, and applications. In Proceedings
of the 3rd ACM SIGCOMM Conference on Internet Measurement (IMC ’03), pages
234–247, 2003.

[28] Cristian Estan and George Varghese. New directions in traffic measurement and
accounting. ACM SIGCOMM Computer Communication Review, 32(4):323–336,
2002.

[29] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items
in data streams. In International Colloquium on Automata, Languages, and Pro-
gramming, pages 693–703, 2002.

[30] Tao Li, Shigang Chen, and Yibei Ling. Per-flow traffic measurement through
randomized counter sharing. IEEE/ACM Transactions on Networking, 20(5):1622–
1634, 2012.

[31] Pratanu Roy, Arijit Khan, and Gustavo Alonso. Augmented sketch: Faster and
more accurate stream processing. In Proceedings of the 2016 International Confer-
ence on Management of Data (SIGMOD), pages 1449–1463, 2016.

[32] Tong Yang, Yang Zhou, Hao Jin, Shigang Chen, and Xiaoming Li. Pyramid sketch:
A sketch framework for frequency estimation of data streams. Proc. VLDB Endow.,
10(11):1442–1453, 2017.

[33] Tong Yang, Junzhi Gong, Haowei Zhang, Lei Zou, Lei Shi, and Xiaoming Li.
Heavyguardian: Separate and guard hot items in data streams. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining (KDD), pages 2584–2593, 2018.

[34] Yang Zhou, Tong Yang, Jie Jiang, Bin Cui, Minlan Yu, Xiaoming Li, and Steve Uhlig.
Cold filter: A meta-framework for faster and more accurate stream processing. In
Proceedings of the 2018 International Conference onManagement of Data (SIGMOD),
pages 741–756, 2018.

[35] Yikai Zhao, Kaicheng Yang, Zirui Liu, Tong Yang, Li Chen, Shiyi Liu, Naiqian
Zheng, Ruixin Wang, Hanbo Wu, Yi Wang, and Nicholas Zhang. Lightguardian:
A Full-Visibility, lightweight, in-band telemetry system using sketchlets. In 18th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 21),
pages 991–1010, 2021.

[36] Burton H Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7):422–426, 1970.

[37] Barefoot tofino: World’s fastest p4-programmable ethernet switch asics. https:
//barefootnetworks.com/products/brief-tofino/.

[38] Bob jenkins’ hash function web page, paper published in dr dobb’s journal.
http://burtleburtle.net/bob/hash/evahash.html.

[39] The CAIDA Anonymized Internet Traces. https://www.caida.org/catalog/
datasets/overview/.

[40] MAWI Working Group Traffic Archive. http://mawi.wide.ad.jp/mawi/.
[41] The Network dataset Internet Traces. http://snap.stanford.edu/data/.
[42] Longkang Shang, Dong Guo, Yuede Ji, and Qiang Li. Discovering unknown

advanced persistent threat using shared features mined by neural networks.
Computer Networks, 189:107937, 2021.

[43] Jiazhong Lu, Kai Chen, Zhongliu Zhuo, and XiaoSong Zhang. A temporal corre-
lation and traffic analysis approach for apt attacks detection. Cluster Computing,
22(3):7347–7358, 2019.

[44] Jiayu Tan and JianWang. Detecting advanced persistent threats based on entropy
and support vector machine. In International Conference on Algorithms and
Architectures for Parallel Processing (ICA3PP), pages 153–165, 2018.

[45] Deana Shick and Angela Horneman. Investigating advanced persistent threat 1
(apt1). Technical Report CMU/SEI-2014-TR-001, Carnegie Mellon University, 2014.

[46] Mila Parkour (2013) Contagio malware data-base. https://www.mediafire.com/
folder/c2az029ch6cke/TRAFFIC_PATTERNS_COLLECTION#734479hwy1b97.

[47] The supplementary material of PISketch. https://github.com/pkufzc/PISketch/
blob/main/PISketch_Supplementary_Material.pdf.

[48] Tcpdump Examples. https://hackertarget.com/tcpdump-examples/.

