
MapEmbed: Perfect Hashing with High Load Factor
and Fast Update

Yuhan Wu∗

Peking University
Zirui Liu∗

Peking University
Xiang Yu∗

Peking University

Jie Gui∗

Peking University
Haochen Gan†

Peking University
Yuhao Han‡

National University of Defense
Technology

Tao Li‡

National University of Defense
Technology

Ori Rottenstreich§

Technion
Tong Yang∗�

Peking University

ABSTRACT
1 Perfect hashing is a hash function that maps a set of distinct

keys to a set of continuous integers without collision. However,

most existing perfect hash schemes are static, which means that

they cannot support incremental updates, while most datasets in

practice are dynamic. To address this issue, we propose a novel

hashing scheme, namelyMapEmbed Hashing. Inspired by divide-

and-conquer and map-and-reduce, our key idea is named map-

and-embed and includes two phases: 1) Map all keys into many

small virtual tables; 2) Embed all small tables into a large table by

circular move. Our experimental results show that under the same

experimental setting, the state-of-the-art perfect hashing (dynamic

perfect hashing) can achieve around 15% load factor, around 0.3

Mops update speed, while our MapEmbed achieves around 90% ∼
95% load factor, and around 8.0 Mops update speed per thread. All

codes of ours and other algorithms are open-sourced at GitHub.

CCS CONCEPTS

• Information systems → Data structures.

KEYWORDS

Perfect Hashing, Hash Tables, KV Stores

∗Department of Computer Science and Technology, Peking University, China
†School of Mathematical Sciences, Peking University, China
‡School of Computer, National University of Defense Technology, Changsha, China
§The Department of Computer Science and the Department of Electrical Engineering,
Technion – Israel Institute of Technology, Haifa, Israel
�National Engineering Laboratory for Big Data Analysis Technology and Application,
Peking University, China
1Yuhan Wu, Zirui Liu, and Xiang Yu contribute equally to this paper. Tong Yang
(yangtongemail@gmail.com) is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD ’21, August 14–18, 2021, Virtual Event, Singapore.

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8332-5/21/08. . . $15.00
https://doi.org/10.1145/3447548.3467240

ACM Reference Format:

Yuhan Wu, Zirui Liu, Xiang Yu, Jie Gui, Haochen Gan, Yuhao Han, Tao

Li, Ori Rottenstreich, and Tong Yang. 2021. MapEmbed: Perfect Hashing

with High Load Factor and Fast Update. In Proceedings of the 27th ACM

SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’21),

August 14–18, 2021, Virtual Event, Singapore. ACM, New York, NY, USA,

10 pages. https://doi.org/10.1145/3447548.3467240

1 INTRODUCTION

1.1 Background and Motivation

Hashing is one of the most fundamental techniques and has a

wide range of applications in various fields, such as data mining,

databases, machine learning, storage, networking [1–6]. Perfect

hashing is a special hash function that maps a set of different keys

to a set of continuous integers without collision. It often consists of

two parts: a small index and a large Key-Value (KV) table. The index

is often small enough to be held in fast memory (e.g., CPU/GPU

Caches, SRAM in FPGA/ASIC), while the KV table is typically larger

and is stored in slow memory (e.g., DDR [7], DRAM [8]). For each

insertion/lookup, perfect hashing first updates/looks-up the index

then the KV table. Perfect Hashing has two advantages: 1) its lookup

time is always constant because hash collision is eliminated, and

each lookup needs only one hash probe in slow memory; 2) its

index is often very small (e.g., 1.56 bits per key [9]), and can be

ignored compared with the large KV table (e.g., each KV pair needs

hundreds of Bytes or more); Thanks to these two advantages, the

perfect hash is widely used in many fields, such as databases [10],

networks [11], and bioinformatics [12].

Most existing perfect hash schemes are static [13–17], which

means that they cannot support incremental updates, while most

datasets in practice are dynamic. In order to insert new keys, the

perfect hash can only reconstruct the whole function from the be-

ginning. Among all existing works, only the Dynamic Perfect Hash

(DPH) [18] supports incremental updates, drastically extending the

application range of perfect hashing. Its key idea is using the divide-

and-conquer methodology: it first divides the datasets into many

small ones; and for each small dataset, it builds a perfect hash table

using existing hash schemes. Therefore, each incremental update

is indeed to reconstruct a small perfect hash table. However, to

control the reconstruction time, it needs to use many hash buckets

for each small perfect hash table. Therefore, its load factor2 can only

achieve 10% ∼ 20% (see Figure 11(a)), i.e., it is memory inefficient.

The design goal of this paper is to keep all advantages of existing

works (constant lookup time, and small index structure) and, at the

same time, to support fast incremental updates and achieve a high

load factor.

1.2 Our Proposed Solution

Towards the design goal, we propose a novel perfect hashing scheme,

namely MapEmbed Hashing. It has the following advantages: 1)

it has no hash collision; 2) its lookup time is always constant; 3) its

index is quite small (e.g., 0.5 ∼ 1.6 bits per key); 4) it supports fast

incremental updates (20× faster than Dynamic Perfect Hashing); 5)

its load factor is high (90% ∼ 95%).

Figure 1: An example of MapEmbed Hashing.

Inspired by divide-and-conquer and map-and-reduce, our key

idea is named map-and-embed, including two phases. 1) Map:

map all keys into many small virtual tables. 2) Embed: merge and

embed all virtual tables into a large table by circular moving.

We use an example to present the two phases. As shown in Figure

1, the data structure of MapEmbed Hashing consists of two parts:

an index table in fast memory and a large KV table in slow memory.

The index table is an array of index cells, each cell corresponds to a

small virtual table consisting of virtual buckets, and each virtual

bucket can store multiple KV pairs. First, wemap each key into a

virtual bucket3 of an index cell using two hash functions: Hash1(·)
and Hash2(·). Second, we embed each virtual table into the KV

table, which consists of real buckets. Specifically, given a virtual

table, each virtual bucket is associated with a real bucket in the

KV table, and we push all KV pairs in each virtual bucket into its

associated real bucket. If no bucket in the large table overflows, the

embed phase succeeds. Otherwise, we circularly move the keys in

the virtual table and try to embed them again. Specifically, for all

keys in the virtual table, we will move them to the next adjacent

virtual bucket. In other words, in one circular move, we will move

the key in the i-th virtual bucket to the (i + 1)-th virtual bucket and

move the key in the last virtual bucket to the first virtual bucket.

2Load factor is the ratio of the number of inserted keys to the number of slots, where
each slot can store one key.
3“Virtual bucket” is only a logical concept, not a bucket that actually stores KV pairs.

We will try embedding after one circular move – pushing all KV

pairs in each virtual bucket into its associated real bucket. If the

embedding succeeds, the insertion is complete. Otherwise, repeat

the circular movement and embedding. The number of circular

moves (the offset number of the keys in the same virtual table)

is recorded in the corresponding index cell. The source codes of

MapEmbed and other related algorithms are available at GitHub 4.

Main Experimental Results: 1)MapEmbed’s index structure is

quite small (e.g., 0.5 ∼ 1.6 bits per key); 2)MapEmbed supports fast

incremental updates (20× faster than Dynamic Perfect Hashing); 3)

MapEmbed’s load factor is high (90% ∼ 95%); 4)We implemented

MapEmbed on a FPGA platform, achieving fast lookup speed (367

Million operations per second).

2 RELATEDWORK

Existing hashing schemes can be divided into two categories: per-

fect hashing without collision and imperfect hashing with colli-

sion. Perfect hashing can be further divided into two categories:

static perfect hashing and dynamic perfect hashing. Perfect hash-

ing schemes only need one probe of a bucket for each query, but

cannot support incremental updates. In practice, one bucket can

store multiple KV pairs. Thanks to cache line and SIMD (Single

Instruction and Multiple Data [19]), probing a bucket with multiple

KV pairs achieves similar speed with probing a bucket with only

one KV pair. Therefore, in our perfect hashing, we store multiple KV

pairs in each bucket to fully utilize the characteristics of commodity

memory. For more hashing schemes, please refer to the literature

[20–24], and the survey [25].

2.1 Perfect Hashing

Perfect hashing searches hash functions that map n distinct ele-

ments in a set S to m (m ≥ n) buckets without collision. When

m = n, it is called minimal perfect hashing.

Static Perfect Hashing expects to find a perfect hash function for

each key in a given set. Typical schemes of static perfect hashing

include FKS, CHD, BDZ, BMZ, BRZ, CHM, and FCH [13–17, 26–29].

The FKS hashing [14] consists of many buckets, and each bucket

has many slots. To insert an item, FKS first hashes it into a subtable

and uses another hash function to hash it into a bucket in that

subtable. When a hash collision occurs in a bucket, the FKS hashing

changes the hash function of the subtable repeatedly until there

is no collision. To reduce hash collision, the load factor of each

subtable is kept very low, i.e., below 1/
√
k where k is the size of

each subtable.

Dynamic Perfect Hashing (DPH) [18] aims to support incre-

mental update based on FKS [14]. Its key idea is divide-and-conquer:

it divides the KV pairs into many groups and builds one small per-

fect hash table for each group. When a hash collision happens in a

small perfect hash table, it just reconstructs the table by changing

the hash function by brute force. To make reconstructions infre-

quent, the load factor of each subtable is kept very low (often less

than 15%). It is the most well-known work to enable Perfect hashing

to support increment update, but it is inefficient in both update

speed and memory usage. Compared to dynamic perfect hashing,

4https://github.com/MapEmbed/MapEmbed

we aim to improve both the load factor and update speed signifi-

cantly.

2.2 Imperfect Hashing

Most existing hash schemes [30–35] are imperfect hashings, which

cannot achieve one hash probe per lookup. In these schemes, hash

collision is inevitable and addressed using different strategies. Typi-

cal solutions include hash chaining, open addressing, using multiple

subtables, etc.

Cuckoo hashing [30] is an illuminating hashing scheme using

the kick operation. It has two hash functions corresponding to two

subtables, and each table consists of multiple buckets. To insert a

key, it selects two candidate buckets from the two tables by hashing

and checks if there is an available (not full) bucket among the two

buckets. If so, it inserts the key into the available bucket, and the

insertion succeeds. Otherwise, it kicks an old key keyold from one

of the two candidate buckets and inserts the new key into it. Then

it probes the other candidate bucket of keyold and tries to insert

the old key to the bucket. If the bucket is unavailable, the kick

operation performs again. This procedure repeats until there is

no collision. When allowing at most 500 kicks and each bucket

stores four items, the cuckoo hashing can achieve a load factor of

95%. Cuckoo hashing needs two hash probes in the worst case for

each lookup, and 1.5 on average. Many variants and applications of

cuckoo hashing have achieved great success, including BCHT [31],

cuckoo filter [32, 36], and more [33–35, 37–43].

Table 1: Main Symbols Used in This Paper.

Symbol Meaning

S Number of cells in fast memory

M Number of buckets in slow memory

D Number of buckets that a cell is associated with

N Number of items a bucket can store

L Number of layers of cell arrays in fast memory

C[j] The offset number stored in the jth cell (cell j)

Hc (·) The hash function mapping a key to a cell

HD (·) The hash function mapping a key to an index,

which is an integer in [0,D − 1]

h
(i)
b
(·)

The hash function (bucket function) that is used
for selecting the ith (i ∈ [0,D − 1]) associated
bucket given a cell

hi (·) The hash function that is used for constructing

h
(i)
b
(·)

B[h(i)
b
(j)] The ith (i ∈ [0,D − 1]) bucket that is associated

with cell j

3 THE MAPEMBED HASH TABLE

3.1 Data Structure

As shown in Figure 2, the data structure of MapEmbed consists of

two parts: 1) A large KV table used to store KV pairs (items). This

table is stored in slowmemory. It is organized as an array ofM buck-

ets, B[0],B[1], . . . ,B[M − 1], where each bucket can store N items.

2) A small index table used to track the index of the current items.

This table is stored in fast memory. It is organized as an array of S

cells and is associated with a hash functionHc (·). Each cell j stores
an offset number C[j]. Each cell j is associated with D buckets by

bucket functions h
(0)
b
(j),h(1)

b
(j), . . . ,h(D−1)

b
(j), which are called

the D associated buckets of cell j . Specifically, the D asso-

ciated buckets of cell j are B[h(0)
b
(j)],B[h(1)

b
(j)], . . . ,B[h(D−1)

b
(j)].

The main symbols used in this paper are shown in Table 1.

Figure 2: Insertion Operation of MapEmbed.

3.2 Basic Operations

Insertion: The process to insert a new item 〈key,value〉 is illus-
trated in Figure 2 and Figure 3. There are four steps. The Map Phase

includes the first two steps, and the Embed phase includes the rest

two steps. The details are as follows:

• Step 1: select a cell. We select cell j by calculating j = Hc (key).
• Step 2: select a bucket. The bucket is selected from the D as-

sociated buckets of cell j, i.e., from B[h(0)
b
(j)], B[h(1)

b
(j)], . . . ,

B[h(D−1)
b

(j)]. First, we calculate an index value i by i = (HD (key)+
C[j]) mod D, where C[j] is the offset number stored in cell j.
Second, we select the ith bucket to place the item, i.e., select

B[h(i)
b
(j)].

• Step 3: insert the item. We insert the item into bucket B[h(i)
b
(j)].

Note this may cause B[h(i)
b
(j)] overflow. If overflow does not

happen, the insertion completes. Otherwise, we go to step 4.

• Step 4: update offset and move items. We first check whether

C[j] = D − 1. If so, which means the items of cell j cannot be
moved, the insertion fails. Otherwise, we increment C[j] by one.

Then we perform a circular move operation as follows. For

each of theD associated buckets of cell j , for each item in it, we ex-

ecute step 1 to check whether the item is mapped into cell j . Take

the ith associated bucket B[h(i)
b
(j)] as an example, for each item

〈key0,value0〉 in it, we check whether Hc (key0) = j. If so, we

move the item to the next associated bucket B[h((i+1) mod D)
b

(j)].
Finally, we check if there is any bucket overflow under the current

arrangement. If not, the insertion operation completes. Other-

wise, we repeat step 4.

Lookup: The process to look up a key is illustrated in Figure 4

and proceeds as follows:

Figure 3: Insertion Operation.

Figure 4: Lookup Operation.

• Step 1: select a cell. We select cell j for the key by calculating

j = Hc (key).
• Step 2: select a bucket. We select bucket B[h(i)

b
(j)] where i =

(HD (key) + C[j]) mod D.

• Step 3: check the selected bucket. We search bucket B[h(i)
b
(j)]

for key and return the results.

Deletion: To delete an item, we first look up it and then delete it.

Examples: We illustrate the circular move operation in Figure 5.

The three examples show a continuous insertion process of three

different KV pairs. Each column is an example.

Example 1: The blue item 〈key1,value1〉 is mapped to cell 5 by

Hc (key1) = 5 and is dispatched to the 3th associated bucket (B[4])
of cell 5, whereHD (key1) = 3 and h

(i)
b
(j) = 4. As bucket B[4] is full,

we increment C[5] by one and start the circular move operation.

For each of the D associated buckets of cell 5 (the buckets with

white background), we check each item in it for whether the item

is mapped into cell 5 in step 1. Then we move all the items mapped

to cell 5 (the colored items) to the next associated bucket. After this

operation, no bucket overflows, so the insertion completes.

Example 2: The green item 〈key2,value2〉 happens to be mapped

to cell 5 again. Next, it is dispatched to a full bucket B[7]. Then we

increment C[5] and perform the circular move operation twice to

arrange all items mapped into cell 5 successfully.

Example 3: The red item 〈key3,value3〉 is mapped into cell 3 and

bucket B[4], and overflow happens at B[4]. We increment C[3] by
one and perform the circular move operation for cell 3.

Analysis: Due to space limitation, we present the theoretical anal-

ysis about how the parameter of MapEmbed influences its perfor-

mance in Appendix A.

3.3 Dynamic Expansion

In practical applications, the dataset often changes dynamically,

so we cannot always set the optimal size of the KV table before-

hand. To address this problem, we propose a dynamic expansion

algorithm, which doubles the number of buckets in slow memory,

while keeping the cells in fast memory unchanged.

As mentioned before, the D associated buckets of cell j are

selected by bucket functions h
(0)
b
(j),h(1)

b
(j), . . . ,h(D−1)

b
(j). We

first elaborate on how the D bucket functions are constructed.
This is done by D hash functions h0(·),h1(·), . . . ,hD−1(·) : cell 	→
{0, ..., INT_MAX }, which hash a cell (or a cell’s unique ID) to

an integer. The ith bucket function is constructed by h
(i)
b
(·) =

hi (·) mod M , whereM is the number of buckets in slow memory.

Our dynamic expansion algorithm proceeds as follows. First,

we perform a copy operation to copy all the M buckets in slow

memory, and then append the copiedM buckets to the originalM
buckets. After this, there are 2M buckets (numbered 0, 1, . . . , 2M−1)
in slow memory, where B[0] is the same as B[M], B[1] is the same

as B[M + 1], etc. Second, we mark all buckets in slow memory as

redundant, meaning there could be redundant items in the bucket.

Afterward, when a redundant bucket is probed during inser-

tion/lookup operation, we perform a redundancy-clean opera-

tion: For each item in this bucket, we check whether it is a redun-

dancy. Specifically, given a redundant bucket B[b], for each item

〈key,value〉 in it, we check whetherb � h(i)
b
(j), where j = Hc (key),

and i = (HD (key) + C[j]) mod D. If so, which means the item is a

redundancy, we delete it from bucket b. After checking all items in

a redundant bucket, we mark the bucket as “clean”.

Analysis: We briefly explain why the expansion operation is rea-

sonable. For an item 〈key,value〉, suppose before expansion, it is
mapped to cell j and bucket B[b], where j = Hc (key), b = h(i)b (j) =
hi (j) mod M , and i = (HD (key) + C[j]) mod D. After expansion,
the item exists in both B[b] and B[b +M]. According to our rules

for selecting the bucket in step 1, the item should be placed in B[b ′],
where b ′ = h(i)

b
(j) = (hi (j) mod 2M). And we have:

(hi (j) mod 2M) =
{ (hi (j) mod M) = b

(hi (j) mod M) +M = b +M

For example, suppose hi (j) = 10 and M = 7, then b = hi (j) mod

M = 10 mod 7 = 3. And b ′ = hi (j) mod (2M) = 10 mod 14 = 3 + 7

= b + M . This property guarantees that each item can still be

retrieved after the expansion operation.

3.4 Optimization using Multi-Layer Index

To improve the load factor, we propose the multi-layer version of

MapEmbed by dividing the cell array into L (e.g., 3) layers (see

Figure 6). Each layer has an independent hash function Hc (·) to
map a key into a cell. The hash function of the ith layer is denoted

Figure 5: Three examples of MapEmbed illustrating the circular move operation (S = 11, D = 5, N = 4, andM = 11).

Figure 6: Multi-Layer MapEmbed.

as H i
c (·). The number of cells is smaller and smaller layer by layer.

For each cell j (j ∈ [0, S(l)] where S(l) denotes the number of cells

in the lth layer), we use C[j] = D − 1 to indicate that cell j “full”.
When an item is mapped into a “full” cell, we should insert it to the

next layer. The available range of the offset number decreases from

[0,D − 1] to [0,D − 2].
Insertion: To insert an item 〈key,value〉, we first try to insert it

into the first layer (suppose it is mapped to cell j at the first layer
where j = H1

c (key)). If the insertion fails, i.e., overflow happens

and C[j] = D−2 (maximum available offset), we delete all the items

that were mapped into cell j from its D mapped buckets, and insert

these items into the second layer. Then we mark cell j as “full”,
i.e., set C[j] to D − 1, and insert 〈key,value〉 into the second layer.

This process repeats layer by layer until all items are successfully

inserted, or insertion fails at the last layer. Note that when inserting

an item, if we find its current mapped cell “full”, we try to insert the

item into the next layer. For example, as shown in Figure 6, when

inserting 〈key,value〉, we first select its mapped cell j = H1
c (key)

at the first layer. Then we find cell j is “full”, so we insert the item

into the second layer.

Lookup: Given a key, to look up its value, we first look up it at

the first layer. If its mapped cell at the first layer is marked as “full”,

we look up it at the second layer. This process repeats until the

mapped cell is not “full”.

4 EXPERIMENTAL RESULTS

4.1 Experimental Setup

Platform: All the CPU simulation experiments were performed

on a server with 18-core CPU (36 threads, Intel CPU i9-10980XE

@3.00 GHz), which have 128GB memory.

Implementation: We implement all the codes with C++ and build

them with g++ (Ubuntu 7.5.0-6ubuntu2) 7.5.0 and -O3 option. The

hash functions we use are 32-bit Murmur Hash [44] with random

initial seeds. We use SIMD [19] to accelerate the process of probing

a bucket.

Datasets:

1) CAIDA Dataset: CAIDA Anonymized Internet Trace [45] is a

set of anonymized IP packets collected from high-speedmonitors on

backbone links. It contains approximately 30M packets belonging

to 1.1M different flows. Each flow is identified by a 4 Byte source IP

address and a 4 Byte destination IP address. We combine the two

IP addresses to form the 8B key of each KV pair and use the 8B

timestamp of each packet as the value field of each KV pair.

2) WebDocs Dataset: WebDocs [46] is a collection of web HTML

documents built by crawling web pages. It contains about 10M

packets, of which 2.7M packets are distinct. We use the 13 Byte

packet in this dataset as the key of each KV pair, and randomly

generate the 13 Byte value field of each KV pair.

3) Synthetic Dataset: We generate ten different synthetic datasets.

Each dataset contains 10M KV pairs. The key and value fields of

each KV pair are both 4 Byte strings generated randomly from a

uniform distribution. We guarantee all the keys in each dataset are

distinct.

Default Parameters: We set the default parameters of MapEmbed

as follows. We let each bucket stores N = 16 elements. We divide

0.0 0.2 0.4 0.6 0.8
0

4

8

12

16

20

24
In
se
rt
io
n
A
M
A

Load Factor

Fast Slow

(a) Insertion AMA.

0.0 0.3 0.6 0.9

1.00

1.05

1.10

Lo
ok

up
A
M
A

Load Factor

Fast Slow

(b) Lookup AMA.

0.0 0.3 0.6 0.9
0

30

60

90

120

150

180

In
se
rt
io
n
W
C
M
A

Load Factor

Fast Slow

(c) Insertion WCMA.

0.0 0.3 0.6 0.9

1.0

1.5

2.0

Lo
ok

up
W
C
M
A

Load Factor

Fast Slow

(d) Lookup WCMA.

Figure 7: Performance of MapEmbed Hashing under Different Load Factor (Synthetic).

MapEmbed’s index cells into L = 3 layers. The first layer has 3

times as many cells as the second layer, and the second layer has 3

times as many cells as the third layer. Each cell is associated with

D = 16 buckets. Furthermore, we set the size of the slow memory

to the same as the size of the insertion workload, i.e., the distinct

KV pairs in the dataset, and set the fast memory size to 0.015 times

of the slow memory. All experiments are repeated 10 times and the

average result is reported.

Evaluation Metrics:

1) Load Factor: We insert KV pairs into the hash table sequentially

until we encounter the 8th insertion failure. The ratio of the number

of the inserted KV pairs to the number of KV pair slots in slow

memory is defined as the Load Factor, reflecting memory efficiency.

2) Throughput (Mops): Million operations per second (Mops).

We use Throughput to evaluate the average insertion/lookup speed.

3) Average Memory Access (AMA):
Q
n , where n refers to the

number of the KV pairs we insert or look up, and Q refers to the

number of memory accesses (fast memory or slow memory) during

the whole insertion or lookup process.

4) Worst-Case Memory Access (WCMA): max{qi }ni=1, where
qi refers to the number of memory accesses when inserting or

looking-up the ith KV pair.

4.2 The Impact of Algorithm Parameters

AMA vs. Load Factor (Figure 7(a)-7(b)): We find that when the

load factor is below 60%, the insertion AMA for both fast and slow

memory is 1. The lookup AMA for slow memory is always 1, and

the lookup AMA for fast memory is 1 when the load factor is below

80%.

WCMA vs. Load Factor (Figure 7(c)-7(d)): We find that when

the load factor is below 40%, the insertion WCMA for both fast

memory and slow memory is 1. When the load factor is 90%, the

insertion WCMA for fast memory is about 150, and the insertion

WCMA for slow memory is about 15. The lookup WCMA for slow

memory is always 1, and the lookup WCMA for fast memory is 1

in most cases.

Load Factor vs. Cell Size (Figure 8(a)): We find that letting each

cell occupy 4 bits (associated with 24 = 16 buckets) is the best

choice. It is noted that there is a trade-off between the size and

the number of index cells. We explore how many bits a cell should

use, or how many buckets a cell should be associated with (i.e.,

how to choose D). Here, we let D take any positive integer value,

rather than just the power of two. For each value Di , we define the

equivalent cell size as t = log2 Di bits. We set the fast memory to a

total size of 84, 000 bits and change the number of bucketsM . From

Figure 8(a), we can observe the impact of D on load factor, which

indicates that allocating 4 bits to each cell is the best choice.

Performance vs. Fast-Slow Memory Ratio (Figure 8(b)-8(e)):

Wefind that as the Fast-SlowMemory Ratio becomes larger,MapEm-

bed’s load factor becomes higher. We fix the total memory size (fast

memory and slow memory) and change the ratio of fast memory

to slow memory (fast-slow ratio). We also change the number of

KV pairs that a bucket can accommodate (N). The experiments

are conducted on the CAIDA and WebDocs datasets. Since the re-

sults are similar on the two datasets, we only present the results

on CAIDA here. From Figure 8(b), we find that the load factor is

higher when the fast-slow ratio is larger or N is larger. From Figure

8(c), we find that a KV pair consumes more space in fast memory

when the fast-slow ratio is larger or N is smaller. In particular, we

find that when the fast-slow ratio is 0.005 and N = 32, MapEmbed

can achieve a load factor of 93%, and each KV pair in slow memory

only consumes 0.5 bits on average in fast memory. Figure 8(d) and

Figure 8(e) show the average processing speed of MapEmbed with

the change of fast-slow ratio and N . We can see that the larger the

fast-slow ratio is, the slower the insertion speed will be. Moreover,

when N becomes larger, both the insertion speed and the lookup

speed decrease.

Impact of Bucket Size (N) (Figure 8(f)-Figure 8(g)): We find

that the performance of MapEmbed is better when using larger

bucket size. When using the bucket size of N = 16, MapEmbed

achieves a load factor of 98% and the insertion speed of 6 Mops.

This is because smaller N leads to more frequent collisions, which

compromises the load factor and the insertion speed. But larger N
will slow down the lookup speed (see Figure 8(e)).

Single-thread Speed vs. Load Factor (Figure 9(a)): We find that

when the load factor is below 50%, the single-thread insertion

throughput is higher than 10 Mops. When the load factor exceeds

50%, the insertion speed drops because of more frequent memory

access. And we find that the single-thread lookup throughput can

reach 30 Mops, which does not decrease with the increase of load

factor. The experimental results are consistent with that of the AMA

and WCMA.

Multi-thread Speed (Figure 9(b)): We find that after using multi-

threaded acceleration, MapEmbed can achieve up to 250Mops query

throughput and 20 Mops insertion throughput. Here, we conduct

experiments using 32-threads on the synthetic dataset, and we vary

the workload from 1 million KV pairs to 16 million KV pairs.

Load Factor vs. Number of Cell Layers (Figure 10): We find

that the multi-layer optimization can significantly improve the load

0 10 20 30 40 50
0.65

0.70

0.75

0.80

0.85

0.90

0.95

Lo
ad

Fa
ct
or

Associated Number D

M = 200 M = 300
M = 400 M = 500

(a) Choose Cell Size (or D).

0.002 0.004 0.006 0.008 0.010
0.2

0.4

0.6

0.8

1.0

Lo
ad

Fa
ct
or

Fast Size / Slow Size

N = 4 N = 8
N = 16 N = 32

(b) Load Factor.

0.002 0.004 0.006 0.008 0.010
0.0

0.5

1.0

1.5

2.0

bi
ts

pe
rk

ey

Fast Size / Slow Size

N = 4 N = 8
N = 16 N = 32

(c) bits per key.

0.002 0.004 0.006 0.008 0.010
2.2

2.5

2.8

3.1

3.4

3.7

Th
ro
ug

hp
ut

(M
op

s)

Fast Size / Slow Size

N = 4 N = 8
N = 16 N = 32

(d) Insertion Speed.

0.002 0.004 0.006 0.008 0.010
6

8

10

12

Th
ro
ug

hp
ut

(M
op

s)

Fast Size / Slow Size

N = 4 N = 8
N = 16 N = 32

(e) Lookup Speed.

1024 2048 4096 8192 16384
0.90

0.92

0.94

0.96

0.98

1.00

Lo
ad

Fa
ct
or

Buckets (M)

N = 1 N = 4
N = 16

(f) Impact of Bucket Size (or N).

1024 2048 4096 8192 16384
2

3

4

5

6

7

In
se
rt
io
n
Sp

ee
d
(M

op
s)

Buckets (M)

N = 1 N = 4
N = 16

(g) Impact of Bucket Size (or N).

Figure 8: The Impact of MapEmbed Hashing Parameters (CAIDA).

0.0 0.3 0.6 0.9
0

10

20

30

40

Th
ro
ug

hp
ut

(M
op

s)

Load Factor

Insertion Lookup

(a) Single-thread Speed.

0 4 8 12 16
22

24

26

28

210

Th
ro
ug

hp
ut

(M
op

s)

KV pairs (Million)

Insertion Lookup

(b) Multi-thread Speed.

Figure 9: Speed Performance of MapEmbed (Synthetic).

Figure 10: The impact of Multi-Layer Index.

factor of MapEmbed. We keep the size of fast memory unchanged

and vary the number of layers of index cells in fast memory. When

using L = 3 layers of index cells, MapEmbed can achieve a load

factor of more than 97%. In contrast, when just using L = 1 layer of

index cells, the load factor is below 80%.

4.3 Evaluation of Dynamic Expansion

We evaluate the expansion performance of MapEmbed in terms

of bits per key and load factor (see Figure 12). In the beginning,

we set the fast-slow ratio to 0.29 and set the number of bucketsM
to 4000. Then we insert the KV pairs from the Synthetic dataset

into MapEmbed sequentially. Every time the 8th insertion failure

happens, we perform the dynamic expansion operation to double

the buckets and then proceed to insert the items. From Figure 12(a),

we find that when the number of expansion increases, bits per key

decreases significantly, because more KV pairs are inserted. From

Figure 12(b), we find that when the number of expansion increases,

the load factor drops, because the fast-slow ratio decreases due to

the expansion operation.

4.4 Comparison with Prior Art

4.4.1 Dynamic Perfect Hashing (DPH).

We evaluate the memory efficiency and insertion/lookup speed

of MapEmbed and DPH. We change the insertion workload from

0.1 Million to 1 Million. For Figure 11(a) and 11(b), we initialize the

number of buckets M = 50, and insert the KV pairs into the two

schemes. For MapEmbed, each time the insertion operation fails,

we perform the dynamic expansion operation to double the buckets.

For Figure 11(c), and 11(d), the number of bucketsM in MapEmbed

is dynamically adjusted according to the insertion workload. For

each dataset, we try to insert all KV pairs sequentially into the

two schemes until the 8th insertion failure. Next, we look up the

inserted keys in the two schemes. Since the experimental results on

the three datasets are similar, we only show some representative

results. The other parameters of MapEmbed are set as the default

parameters described in Section 4.1.

Memory Efficiency (Figure 11(a)-11(b)): We find that the load

factor of MapEmbed is about 5.0× higher than DPH. We also find

that when the insertion workload is fixed, DPH needs 5.0× space

than MapEmbed. As DPH adopts a very low load factor to ensure

the rebuilding operation infrequent, its memory efficiency is poorer.

Insertion/Lookup Speed (Figure 11(c)-11(d)): We find that the

insertion speed of MapEmbed is about 20× faster than DPH. When

the load factor is below 20%, the insertion speed of MapEmbed

achieves 21.69× faster than DPH. The superiority of MapEmbed

0.1 0.4 0.7 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Lo

ad
Fa

ct
or

KV pairs (Million)

MapEmbed (ours) DPH

(a) Load Factor (WebDocs).

0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

M
em

or
y
U
sa
ge

(M
B
)

KV pairs (Million)

MapEmbed (ours) DPH

(b) Memory Usage (CAIDA).

0.2 0.4 0.6 0.8 1.0

0

2

4

6

Th
ro
ug

hp
ut

(M
op

s)

KV pairs (Million)

MapEmbed (ours) DPH

(c) Insertion Speed (Synthetic).

0.2 0.4 0.6 0.8 1.0

20

24

28

32

36

40

Th
ro
ug

hp
ut

(M
op

s)

KV pairs (Million)

MapEmbed (ours) DPH

(d) Lookup Speed (Synthetic).

Figure 11: MapEmbed Hashing vs. DPH.

0 2 4 6 8
0

10

20

30

40

bi
ts

pe
rk

ey

Number of Expansion

bits per key

(a) bits per key.

0 2 4 6 8
0.4

0.6

0.8

1.0

Lo
ad

Fa
ct
or

Number of Expansion

Load Factor

(b) Load Factor.

Figure 12: Evaluation of Expansion Operation (Synthetic).

is due to 2 reasons. First, in most cases, MapEmbed only needs

to access memory twice per insertion, while DPH might need to

rebuild the full hash table, which results in many memory accesses.

Second, MapEmbed does not need to change hash function by brute

force during insertion, which is time-consuming. And we find that

the lookup speed of MapEmbed is about 1.41× faster than DPH.

4.4.2 Static Perfect Hashing (SPH).

We compare MapEmbed with four minimal perfect hashing (MPH)

schemes (i.e., BMZ, CMH, BDZ, and CHD) and two perfect hashing

(PH) schemes (i.e., BDZ_PH and CHD_PH) in CMPH library [13].

The CMPH library encapsulates the newest and most efficient MPH

algorithms in a production-quality API. As the algorithms in the

CMPH library can only be constructed statically, we define their

average insertion throughput as the number of inserted keys divided

by the construction time. The experiments are performed on the

CAIDA dataset and the Synthetic dataset. Since the experimental

results on the two datasets are similar, we only show results on the

CAIDA dataset.

(a) Insertion Speed. (b) Lookup Speed.

Figure 13: MapEmbed Hashing vs. SPH (CAIDA).

Insertion/Lookup Speed (Figure 13): We find that the inser-

tion/lookup speed of MapEmbed is significantly better than the six

static perfect hashing schemes. The fastest SPH schemeCMPH_CHD

can only achieve a insertion throughput of 2.07 Mops, whereas that

of MapEmbed can reach 8.0 Mops. And the lookup throughput of

MapEmbed is also at least 4× faster than SPH.

Memory Efficiency (Table 2): We find that MapEmbed signifi-

cantly outperforms the candidate MPH/PH schemes in terms of

memory efficiency. The load factor of the two candidate PH schemes

depends on the size of the index structure. As shown in Table 2,

BDZ_PH has a load factor of 81.3% at the cost of 1.95 bits per key,

and CHD_PH has a load factor of 50.0% at the cost of 0.67 bits per

key [13]. Compared with the two PH schemes, MPH needs more

space for the index (� 2.07 bits per key). We can see that MapEmbed

performs better (93% load factor at the cost of 0.5 bits per key).

Table 2: Memory Efficiency of MapEmbed and SPH.

Algorithms Load Factor bits per key

MapEmbed 93% 0.5

BDZ 100% 2.6

BDZ_PH 81.2% 1.95

CHD 100% 2.07

CHD_PH 50% 0.67

4.5 Evaluation on FPGA Platform

We implement the lookup module of MapEmbed on an FPGA net-

work experimental platform (Virtex-7 VC709). The FPGA integrated

with the platform is xc7vx690tffg1761-2 with 433200 Slice LUTs,

866400 Slice Register, and 850 Block RAM Tile (i.e., 30.6Mb on-chip

memory). The implementation mainly consists of three hardware

modules: calculating hash values (calculating), searching the table

(searching), and writing the matched results (writing). FPGA-based

MapEmbed is fully pipelined, which can input one key in every

clock, and output one result after four clocks. According to the

synthesis report (see Table 3), the clock frequency of our implemen-

tation in FPGA is 367 MHz, meaning the throughput of the system

can be 367 Mops. Moreover, the logic resource usage is 0.98%, and

memory resource usage is 0.3%.

Table 3: Performance on FPGA Platform.

Module
Resource Overhead Frequency

(MHz)LUTs Register Block Tile

Calculating 1911 47 0 367

Searching 2312 2268 0 367

Writing 5 5 0 367

Total 4228 2320 0 367

5 CONCLUSION

Perfect hashing is well known for its constant worst-case lookup

time: only one hash probe for each lookup. Most perfect hashing

scheme cannot support incremental updates. The state-of-the-art

hashing can support incremental updates at the cost of memory

inefficiency. To address this issue, we propose MapEmbed Hash-

ing. Extensive experiments on CPU and FPGA platforms show that

compared to the state-of-the-art hashing (dynamic perfect hashing):

1) MapEmbed improves the update speed 20 times; 2) MapEmbed

improves the load factor from around 15% to 90% ∼ 95%; 3) MapEm-

bed’s index structure is quite small (e.g., 0.5 ∼ 1.6 bits per key).

ACKNOWLEDGMENT

We thank Yikai Zhao for his help on experiments. This work is

supported by Primary Research & Development Plan of China

(2016YFB1000304), and National Natural Science Foundation of

China (NSFC) (No. U20A20179).

REFERENCES
[1] Haoyu Zhang and Qin Zhang. Minjoin: Efficient edit similarity joins via local

hash minima. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pages 1093–1103, 2019.

[2] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on
large clusters. Communications of the ACM, 51(1):107–113, 2008.

[3] Helen HW Chan, Chieh-Jan Mike Liang, Yongkun Li, Wenjia He, Patrick PC Lee,
Lianjie Zhu, Yaozu Dong, Yinlong Xu, Yu Xu, Jin Jiang, et al. Hashkv: Enabling
efficient updates in {KV} storage via hashing. In 2018 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 18), pages 1007–1019, 2018.

[4] Haoyu Song, Sarang Dharmapurikar, Jonathan Turner, and John Lockwood. Fast
hash table lookup using extended bloom filter: an aid to network processing.
ACM SIGCOMM Computer Communication Review, 35(4):181–192, 2005.

[5] Hao-Jun Michael Shi, Dheevatsa Mudigere, Maxim Naumov, and Jiyan Yang.
Compositional embeddings using complementary partitions for memory-efficient
recommendation systems. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 165–175, 2020.

[6] Wei Wu, Bin Li, Ling Chen, and Chengqi Zhang. Efficient attributed network em-
bedding via recursive randomized hashing. In IJCAI International Joint Conference
on Artificial Intelligence, 2018.

[7] The benefits of altera’s high-speed ddr sdram memory interface solu-
tion. https://www.intel.com/content/dam/www/programmable/us/en/pdfs/
literature/wp/wp_stratix_ddr.pdf.

[8] Wang Feng and Hamdi Mounir. Matching the speed gap between sram and dram.
In Proc. IEEE HSPR, pages 104–109, 2008.

[9] Emmanuel Esposito, Thomas Mueller Graf, and Sebastiano Vigna. Recsplit:
Minimal perfect hashing via recursive splitting. In 2020 Proceedings of the Twenty-
Second Workshop on Algorithm Engineering and Experiments (ALENEX), pages
175–185. SIAM, 2020.

[10] Chin-Chen Chang and Chih-Yang Lin. Perfect hashing schemes for mining
association rules. The Computer Journal, 48(2):168–179, 2005.

[11] Yi Lu, Balaji Prabhakar, and Flavio Bonomi. Perfect hashing for network ap-
plications. In 2006 IEEE International Symposium on Information Theory, pages
2774–2778. IEEE, 2006.

[12] Rayan Chikhi, Antoine Limasset, and Paul Medvedev. Compacting de bruijn
graphs from sequencing data quickly and in low memory. Bioinformatics,
32(12):i201–i208, 2016.

[13] C minimal perfect hashing library. http://cmph.sourceforge.net/.
[14] Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table

with o(1) worst case access time. 1984.
[15] Djamal Belazzougui, Fabiano CBotelho, andMartin Dietzfelbinger. Hash, displace,

and compress. In European Symposium on Algorithms, pages 682–693. Springer,
2009.

[16] Fabiano C Botelho, Rasmus Pagh, and Nivio Ziviani. Simple and space-efficient
minimal perfect hash functions. In Workshop on Algorithms and Data Structures,
pages 139–150. Springer, 2007.

[17] Fabiano C Botelho, David M Gomes, and Nivio Ziviani. A new algorithm for
constructing minimal perfect hash functions. differences, 100(2):09, 2004.

[18] Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer Auf
Der Heide, Hans Rohnert, and Robert E Tarjan. Dynamic perfect hashing: Upper
and lower bounds. SIAM Journal on Computing, 23(4):738–761, 1994.

[19] Intel instructions. Available: https://software.intel.com/sites/landingpage/
IntrinsicsGuide/.

[20] Michael A Bender, Martin Farach-Colton, Rob Johnson, Russell Kraner, Bradley C
Kuszmaul, Dzejla Medjedovic, Pablo Montes, Pradeep Shetty, Richard P Spillane,
and Erez Zadok. Don’t thrash: How to cache your hash on flash. Proc. VLDB
Endow., 5(11):1627–1637, 2012.

[21] Lailong Luo, Deke Guo, Richard TB Ma, Ori Rottenstreich, and Xueshan Luo.
Optimizing bloom filter: Challenges, solutions, and comparisons. IEEE Commu-
nications Surveys & Tutorials, 21(2):1912–1949, 2018.

[22] Prashant Pandey, Michael A Bender, Rob Johnson, and Rob Patro. A general-
purpose counting filter: Making every bit count. In Proceedings of the 2017 ACM
international conference on Management of Data, pages 775–787, 2017.

[23] Kaan Kara and Gustavo Alonso. Fast and robust hashing for database operators.
In 2016 26th International Conference on Field Programmable Logic and Applications
(FPL), pages 1–4. IEEE, 2016.

[24] Stefan Richter, Victor Alvarez, and Jens Dittrich. A seven-dimensional analysis of
hashing methods and its implications on query processing. PVLDB, 9(3):96–107,
2015.

[25] A. Kirsch, M. Mitzenmacher, and G. Varghese. Hash-based techniques for high-
speed packet processing. In In Algorithms for Next Generation Networks, page
181, 2010.

[26] Gnu gperf. https://www.gnu.org/software/gperf/.
[27] Fabiano C Botelho, Yoshiharu Kohayakawa, and Nivio Ziviani. An approach for

minimal perfect hash functions for very large databases. Universidade Federal de
Minas Gerais, Belo Horizonte, Brazil, Tech. Rep, 95, 2006.

[28] Zbigniew J Czech, George Havas, and Bohdan S Majewski. An optimal algorithm
for generating minimal perfect hash functions. Information processing letters,
43(5):257–264, 1992.

[29] Edward A Fox, Qi Fan Chen, and Lenwood S Heath. A faster algorithm for
constructing minimal perfect hash functions. In Proceedings of the 15th annual
international ACM SIGIR conference on Research and development in information
retrieval, pages 266–273, 1992.

[30] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Journal of Algorithms,
51(2):122–144, 2004.

[31] Orestis Polychroniou, Arun Raghavan, and Kenneth A Ross. Rethinking simd
vectorization for in-memory databases. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, pages 1493–1508, 2015.

[32] Bin Fan, Dave G Andersen, Michael Kaminsky, and Michael D Mitzenmacher.
Cuckoo filter: Practically better than bloom. In ACM CoNEXT, 2014.

[33] Salvatore Pontarelli, Pedro Reviriego, and Michael Mitzenmacher. Emoma: ex-
act match in one memory access. IEEE Transactions on Knowledge and Data
Engineering, 30(11):2120–2133, 2018.

[34] Bin Fan, David G Andersen, and Michael Kaminsky. Memc3: Compact and
concurrent memcache with dumber caching and smarter hashing. In NSDI,
volume 13, pages 385–398, 2013.

[35] Kai Zhang, Kaibo Wang, Yuan Yuan, Lei Guo, Rubao Lee, and Xiaodong Zhang.
Mega-kv: a case for gpus to maximize the throughput of in-memory key-value
stores. Proceedings of the VLDB Endowment, 8(11):1226–1237, 2015.

[36] Lailong Luo, Deke Guo, Ori Rottenstreich, Richard T. B. Ma, Xueshan Luo, and
Bangbang Ren. The consistent cuckoo filter. In IEEE INFOCOM, 2019.

[37] Dagang Li, Rong Du, Ziheng Liu, Tong Yang, and Bin Cui. Multi-copy cuckoo
hashing. In 2019 IEEE 35th International Conference on Data Engineering (ICDE),
pages 1226–1237. IEEE, 2019.

[38] Flaviene de Cristo, Eduardo de Almeida, and Marco Alves. Vivid cuckoo hash:
Fast cuckoo table building in simd. In Anais Principais do XX Simpósio em Sistemas
Computacionais de Alto Desempenho, pages 288–299. SBC, 2019.

[39] Alex D Breslow and Nuwan S Jayasena. Morton filters: faster, space-efficient
cuckoo filters via biasing, compression, and decoupled logical sparsity. Proceed-
ings of the VLDB Endowment, 11(9):1041–1055, 2018.

[40] Harald Lang, Thomas Neumann, Alfons Kemper, and Peter Boncz. Performance-
optimal filtering: Bloom overtakes cuckoo at high throughput. Proceedings of the
VLDB Endowment, 12(5):502–515, 2019.

[41] Minmei Wang, Mingxun Zhou, Shouqian Shi, and Chen Qian. Vacuum filters:
more space-efficient and faster replacement for bloom and cuckoo filters. Pro-
ceedings of the VLDB Endowment, 13(2):197–210, 2019.

[42] David Eppstein, Michael T Goodrich, Michael Mitzenmacher, and Manuel R
Torres. 2-3 cuckoo filters for faster triangle listing and set intersection. In
Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, pages 247–260, 2017.

[43] Sourav Dutta, Ankur Narang, and Suman K Bera. Streaming quotient filter: a near
optimal approximate duplicate detection approach for data streams. Proceedings
of the VLDB Endowment, 6(8):589–600, 2013.

[44] Murmur hashing source codes. https://github.com/aappleby/smhasher/blob/
master/src/MurmurHash3.cpp.

[45] CAIDA [on line]. Available: http://www.caida.org/home.
[46] The web page data set. http://fimi.ua.ac.be/.

A MATHEMATICAL ANALYSIS

We provide the theoretical analysis of MapEmbed Hashing. We

assume the circular move operation does not change the distribution

of the number of items in a bucket. Based on this assumption, we

first derive the probability of circular move operation during the

t th insertion in Section A.1. We then estimate of the number of

memory accesses of MapEmbed’s insertion/lookup operation in

Section A.2. For the symbols we use in this section, please refer to

Table 1.

A.1 Probability of Circular Move

In this section, we derive the probability of the circular move op-

eration during the t th insertion operation in the basic version of

MapEmbed.

First, it is noticed that the cells in fast memory are randomly

mapped to the buckets in slow memory, which means that a bucket

can correspond to arbitrary cells. Thus, the possibility of bucket i
corresponding to cell j is:

pi , j = 1 −
CD
M−1
CD
M

(1)

where Cba represents the combination number, which is defined as:

Cba :=
a!

b!(a − b)!
Note that all the buckets and cells are symmetrical, thus we

suppose:

p = pi , j = 1 −
CD
M−1
CD
M

= 1 − M − D

M
=

D

M

whereM � D according to the definition.

Then we define the random variable X as the number of cells

corresponding to a given bucket. Note that X obeys binomial distri-

bution, so we have

P(X = k) = CkS · pk (1 − p)S−k (2)

where E(X) = pS , and D(X) = p(1 − p)S .
We assume that the circular move operation has not happened,

and define the random variable Y as the number of items in bucket

i after the t th insertion. Then we have

P(Y = y |X = k) = C
y
t · qy (1 − q)t−y (3)

where q := k
S is the possibility of an item being inserted into the

cell corresponding to bucket i .
According to Total Probability Theorem, we have

P(Y = y) =
S∑

k=1

P(Y = y |X = k) · P(X = k)

=

S∑
k=1

[Cyt · qy (1 − q)t−y] · CkS · pk (1 − p)S−k

where q and p are defined as described above.

The circular move operation occurs at bucket i when the bucket

overflows. Since bucket i is randomly selected, the probability of

circular move is:

P(circular) =
+∞∑
y=N

P(Y = y)

=

+∞∑
y=N

S∑
k=1

[Cyt · qy (1 − q)t−y] · CkS · pk (1 − p)S−k

A.2 Estimation of Memory Accesses

In this section, we consider the multi-layer version of MapEmbed.

We first give an estimation of the number of fast memory access

during the t th insertion operation. Then we provide the estimated

number of fast memory access during a lookup operation after t
items have been inserted.

We use p
(l)
c to denote the probability of circular move occurring

in the lth layer during the t th insertion , i.e., p
(l)
c := P (l)(circular).

Recall that when inserting an item, we first map it into a cell j in
the first layer. The insertion operation in the first layer fails if cell j
is “full”, i.e., C[j] = D − 1, which means the circular move operation

has happened in cell j for D − 2 times. So the possibility of the

selected cell in the lth layer to be “full” is p
(l)
f
= (p(l)c)D−2.

Suppose during the t th insertion, there areH[j] items in slow

memory mapping into cell j. During the t th insertion, if we need

to mark cell j as ‘full”, we should delete theH[j] items from their

buckets and insert these items into the next layer. This process

incurs another H[j] memory accesses. As H[j] is independent
from the possibility of successful insertion, we have E(H[j]) = t

S (l) ,

where S(l) denotes the number of cells in the lth layer.

Let the random variable I denote the number of fast memory

accesses during the t th insertion, we have

E(I) = E(I1) + E(I2) (4)

where the first term represents the cost of probing fast memory for

the t th item, and the second term represents the cost of deleting

theH[j] items and inserting them into the next layer.

And we have

E(I1) =
L∑

k=1

k · (p(l)
f
)k−1(1 − p

(l)
f
)

and

E(I2) =
L∑

k=1

(k − 1) · (p(l)
f
)k−1(1 − p

(l)
f
) · E(H[j])

=

L∑
k=1

(k − 1) · (p(l)
f
)k−1(1 − p

(l)
f
) · t

S(l)

Let pb denote the possibility that a given bucket is full after t
items have been inserted. We use the random variable U to denote

the number of fast memory access during a lookup operation. We

have

E(U) =
L∑

k=1

k · pk−1
b

(1 − pb) (5)

